Aleurone Cell Development

نویسندگان

  • Philip W. Becraft
  • P. W. Becraft
چکیده

The periphery of the endosperm of many plant species forms an epidermis-like layer called the aleurone. During germination, the aleurone performs an important digestive function, secreting hydrolases to break down the starch and proteins stored in the starchy endosperm cells. Several features of cereal aleurone cells make them an attractive system for studying fundamental questions of cell fate and differentiation. The system is conceptually simple, with a single fate choice between starchy endosperm or aleurone cell types. The surface location makes the cells accessible for study, and they can be readily isolated by peeling from developing grains. Because of these experimental advantages and its importance to crop utilization, aleurone development has been most intensively studied in cereals. This chapter describes a picture of aleurone cell fate specification and development as a dynamic system displaying unique modifications to the cell cycle and cytoskeletal arrays, and surprising plasticity in cell fate decisions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of aleurone development in cereal grains.

The aleurone layer of cereal grains is important biologically as well as nutritionally and economically. Here, current knowledge on the regulation of aleurone development is reviewed. Recent reports suggest that the control of aleurone development is more complex than earlier models portrayed. Multiple levels of genetic regulation control aleurone cell fate, differentiation, and organization. T...

متن کامل

Signaling from the embryo conditions Vp1-mediated repression of alpha-amylase genes in the aleurone of developing maize seeds.

The VP1 transcription factor functions as both a repressor and an activator of gene expression in the developing aleurone. Vp1 activation of the anthocyanin pathway exhibits strict cell autonomy in aleurone. In contrast, Vp1-mediated repression of hydrolase genes in aleurone cells during seed development is determined by a combination of cell autonomous and cell non-autonomous signals. To analy...

متن کامل

The defective seed5 (des5) mutant: effects on barley seed development and HvDek1, HvCr4, and HvSal1 gene regulation

Barley, one of the major small grain crops, is especially important in climatically demanding agricultural areas of the world, with multiple uses within food, feed, and beverage. The barley endosperm is further of special scientific interest due to its three aleurone cell layers, with the potential of bringing forward the molecular understanding of seed development and cell specification from A...

متن کامل

Aleurone cell identity is suppressed following connation in maize kernels.

Expression of the cytokinin-synthesizing isopentenyl transferase enzyme under the control of the Arabidopsis (Arabidopsis thaliana) SAG12 senescence-inducible promoter reverses the normal abortion of the lower floret from a maize (Zea mays) spikelet. Following pollination, the upper and lower floret pistils fuse, producing a connated kernel with two genetically distinct embryos and the endosper...

متن کامل

The thick aleurone1 mutant defines a negative regulation of maize aleurone cell fate that functions downstream of defective kernel1.

The maize (Zea mays) aleurone layer occupies the single outermost layer of the endosperm. The defective kernel1 (dek1) gene is a central regulator required for aleurone cell fate specification. dek1 mutants have pleiotropic phenotypes including lack of aleurone cells, aborted embryos, carotenoid deficiency, and a soft, floury endosperm deficient in zeins. Here we describe the thick aleurone1 (t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007